GeographicLib 1.52
Loading...
Searching...
No Matches
Rhumb.cpp
Go to the documentation of this file.
1/**
2 * \file Rhumb.cpp
3 * \brief Implementation for GeographicLib::Rhumb and GeographicLib::RhumbLine
4 * classes
5 *
6 * Copyright (c) Charles Karney (2014-2021) <charles@karney.com> and licensed
7 * under the MIT/X11 License. For more information, see
8 * https://geographiclib.sourceforge.io/
9 **********************************************************************/
10
11#include <algorithm>
13
14namespace GeographicLib {
15
16 using namespace std;
17
18 Rhumb::Rhumb(real a, real f, bool exact)
19 : _ell(a, f)
20 , _exact(exact)
21 , _c2(_ell.Area() / 720)
22 {
23 // Generated by Maxima on 2015-05-15 08:24:04-04:00
24#if GEOGRAPHICLIB_RHUMBAREA_ORDER == 4
25 static const real coeff[] = {
26 // R[0]/n^0, polynomial in n of order 4
27 691, 7860, -20160, 18900, 0, 56700,
28 // R[1]/n^1, polynomial in n of order 3
29 1772, -5340, 6930, -4725, 14175,
30 // R[2]/n^2, polynomial in n of order 2
31 -1747, 1590, -630, 4725,
32 // R[3]/n^3, polynomial in n of order 1
33 104, -31, 315,
34 // R[4]/n^4, polynomial in n of order 0
35 -41, 420,
36 }; // count = 20
37#elif GEOGRAPHICLIB_RHUMBAREA_ORDER == 5
38 static const real coeff[] = {
39 // R[0]/n^0, polynomial in n of order 5
40 -79036, 22803, 259380, -665280, 623700, 0, 1871100,
41 // R[1]/n^1, polynomial in n of order 4
42 41662, 58476, -176220, 228690, -155925, 467775,
43 // R[2]/n^2, polynomial in n of order 3
44 18118, -57651, 52470, -20790, 155925,
45 // R[3]/n^3, polynomial in n of order 2
46 -23011, 17160, -5115, 51975,
47 // R[4]/n^4, polynomial in n of order 1
48 5480, -1353, 13860,
49 // R[5]/n^5, polynomial in n of order 0
50 -668, 5775,
51 }; // count = 27
52#elif GEOGRAPHICLIB_RHUMBAREA_ORDER == 6
53 static const real coeff[] = {
54 // R[0]/n^0, polynomial in n of order 6
55 128346268, -107884140, 31126095, 354053700, -908107200, 851350500, 0,
56 2554051500LL,
57 // R[1]/n^1, polynomial in n of order 5
58 -114456994, 56868630, 79819740, -240540300, 312161850, -212837625,
59 638512875,
60 // R[2]/n^2, polynomial in n of order 4
61 51304574, 24731070, -78693615, 71621550, -28378350, 212837625,
62 // R[3]/n^3, polynomial in n of order 3
63 1554472, -6282003, 4684680, -1396395, 14189175,
64 // R[4]/n^4, polynomial in n of order 2
65 -4913956, 3205800, -791505, 8108100,
66 // R[5]/n^5, polynomial in n of order 1
67 1092376, -234468, 2027025,
68 // R[6]/n^6, polynomial in n of order 0
69 -313076, 2027025,
70 }; // count = 35
71#elif GEOGRAPHICLIB_RHUMBAREA_ORDER == 7
72 static const real coeff[] = {
73 // R[0]/n^0, polynomial in n of order 7
74 -317195588, 385038804, -323652420, 93378285, 1062161100, -2724321600LL,
75 2554051500LL, 0, 7662154500LL,
76 // R[1]/n^1, polynomial in n of order 6
77 258618446, -343370982, 170605890, 239459220, -721620900, 936485550,
78 -638512875, 1915538625,
79 // R[2]/n^2, polynomial in n of order 5
80 -248174686, 153913722, 74193210, -236080845, 214864650, -85135050,
81 638512875,
82 // R[3]/n^3, polynomial in n of order 4
83 114450437, 23317080, -94230045, 70270200, -20945925, 212837625,
84 // R[4]/n^4, polynomial in n of order 3
85 15445736, -103193076, 67321800, -16621605, 170270100,
86 // R[5]/n^5, polynomial in n of order 2
87 -27766753, 16385640, -3517020, 30405375,
88 // R[6]/n^6, polynomial in n of order 1
89 4892722, -939228, 6081075,
90 // R[7]/n^7, polynomial in n of order 0
91 -3189007, 14189175,
92 }; // count = 44
93#elif GEOGRAPHICLIB_RHUMBAREA_ORDER == 8
94 static const real coeff[] = {
95 // R[0]/n^0, polynomial in n of order 8
96 71374704821LL, -161769749880LL, 196369790040LL, -165062734200LL,
97 47622925350LL, 541702161000LL, -1389404016000LL, 1302566265000LL, 0,
98 3907698795000LL,
99 // R[1]/n^1, polynomial in n of order 7
100 -13691187484LL, 65947703730LL, -87559600410LL, 43504501950LL,
101 61062101100LL, -184013329500LL, 238803815250LL, -162820783125LL,
102 488462349375LL,
103 // R[2]/n^2, polynomial in n of order 6
104 30802104839LL, -63284544930LL, 39247999110LL, 18919268550LL,
105 -60200615475LL, 54790485750LL, -21709437750LL, 162820783125LL,
106 // R[3]/n^3, polynomial in n of order 5
107 -8934064508LL, 5836972287LL, 1189171080, -4805732295LL, 3583780200LL,
108 -1068242175, 10854718875LL,
109 // R[4]/n^4, polynomial in n of order 4
110 50072287748LL, 3938662680LL, -26314234380LL, 17167059000LL,
111 -4238509275LL, 43418875500LL,
112 // R[5]/n^5, polynomial in n of order 3
113 359094172, -9912730821LL, 5849673480LL, -1255576140, 10854718875LL,
114 // R[6]/n^6, polynomial in n of order 2
115 -16053944387LL, 8733508770LL, -1676521980, 10854718875LL,
116 // R[7]/n^7, polynomial in n of order 1
117 930092876, -162639357, 723647925,
118 // R[8]/n^8, polynomial in n of order 0
119 -673429061, 1929727800,
120 }; // count = 54
121#else
122#error "Bad value for GEOGRAPHICLIB_RHUMBAREA_ORDER"
123#endif
124 static_assert(sizeof(coeff) / sizeof(real) ==
125 ((maxpow_ + 1) * (maxpow_ + 4))/2,
126 "Coefficient array size mismatch for Rhumb");
127 real d = 1;
128 int o = 0;
129 for (int l = 0; l <= maxpow_; ++l) {
130 int m = maxpow_ - l;
131 // R[0] is just an integration constant so it cancels when evaluating a
132 // definite integral. So don't bother computing it. It won't be used
133 // when invoking SinCosSeries.
134 if (l)
135 _R[l] = d * Math::polyval(m, coeff + o, _ell._n) / coeff[o + m + 1];
136 o += m + 2;
137 d *= _ell._n;
138 }
139 // Post condition: o == sizeof(alpcoeff) / sizeof(real)
140 }
141
143 static const Rhumb
144 wgs84(Constants::WGS84_a(), Constants::WGS84_f(), false);
145 return wgs84;
146 }
147
148 void Rhumb::GenInverse(real lat1, real lon1, real lat2, real lon2,
149 unsigned outmask,
150 real& s12, real& azi12, real& S12) const {
151 real
152 lon12 = Math::AngDiff(lon1, lon2),
153 psi1 = _ell.IsometricLatitude(lat1),
154 psi2 = _ell.IsometricLatitude(lat2),
155 psi12 = psi2 - psi1,
156 h = hypot(lon12, psi12);
157 if (outmask & AZIMUTH)
158 azi12 = Math::atan2d(lon12, psi12);
159 if (outmask & DISTANCE) {
160 real dmudpsi = DIsometricToRectifying(psi2, psi1);
161 s12 = h * dmudpsi * _ell.QuarterMeridian() / 90;
162 }
163 if (outmask & AREA)
164 S12 = _c2 * lon12 *
165 MeanSinXi(psi2 * Math::degree(), psi1 * Math::degree());
166 }
167
168 RhumbLine Rhumb::Line(real lat1, real lon1, real azi12) const
169 { return RhumbLine(*this, lat1, lon1, azi12, _exact); }
170
171 void Rhumb::GenDirect(real lat1, real lon1, real azi12, real s12,
172 unsigned outmask,
173 real& lat2, real& lon2, real& S12) const
174 { Line(lat1, lon1, azi12).GenPosition(s12, outmask, lat2, lon2, S12); }
175
176 Math::real Rhumb::DE(real x, real y) const {
177 const EllipticFunction& ei = _ell._ell;
178 real d = x - y;
179 if (x * y <= 0)
180 return d != 0 ? (ei.E(x) - ei.E(y)) / d : 1;
181 // See DLMF: Eqs (19.11.2) and (19.11.4) letting
182 // theta -> x, phi -> -y, psi -> z
183 //
184 // (E(x) - E(y)) / d = E(z)/d - k2 * sin(x) * sin(y) * sin(z)/d
185 //
186 // tan(z/2) = (sin(x)*Delta(y) - sin(y)*Delta(x)) / (cos(x) + cos(y))
187 // = d * Dsin(x,y) * (sin(x) + sin(y))/(cos(x) + cos(y)) /
188 // (sin(x)*Delta(y) + sin(y)*Delta(x))
189 // = t = d * Dt
190 // sin(z) = 2*t/(1+t^2); cos(z) = (1-t^2)/(1+t^2)
191 // Alt (this only works for |z| <= pi/2 -- however, this conditions holds
192 // if x*y > 0):
193 // sin(z) = d * Dsin(x,y) * (sin(x) + sin(y))/
194 // (sin(x)*cos(y)*Delta(y) + sin(y)*cos(x)*Delta(x))
195 // cos(z) = sqrt((1-sin(z))*(1+sin(z)))
196 real sx = sin(x), sy = sin(y), cx = cos(x), cy = cos(y);
197 real Dt = Dsin(x, y) * (sx + sy) /
198 ((cx + cy) * (sx * ei.Delta(sy, cy) + sy * ei.Delta(sx, cx))),
199 t = d * Dt, Dsz = 2 * Dt / (1 + t*t),
200 sz = d * Dsz, cz = (1 - t) * (1 + t) / (1 + t*t);
201 return ((sz != 0 ? ei.E(sz, cz, ei.Delta(sz, cz)) / sz : 1)
202 - ei.k2() * sx * sy) * Dsz;
203 }
204
205 Math::real Rhumb::DRectifying(real latx, real laty) const {
206 real
207 tbetx = _ell._f1 * Math::tand(latx),
208 tbety = _ell._f1 * Math::tand(laty);
209 return (Math::pi()/2) * _ell._b * _ell._f1 * DE(atan(tbetx), atan(tbety))
210 * Dtan(latx, laty) * Datan(tbetx, tbety) / _ell.QuarterMeridian();
211 }
212
213 Math::real Rhumb::DIsometric(real latx, real laty) const {
214 real
215 phix = latx * Math::degree(), tx = Math::tand(latx),
216 phiy = laty * Math::degree(), ty = Math::tand(laty);
217 return Dasinh(tx, ty) * Dtan(latx, laty)
218 - Deatanhe(sin(phix), sin(phiy)) * Dsin(phix, phiy);
219 }
220
221 Math::real Rhumb::SinCosSeries(bool sinp,
222 real x, real y, const real c[], int n) {
223 // N.B. n >= 0 and c[] has n+1 elements 0..n, of which c[0] is ignored.
224 //
225 // Use Clenshaw summation to evaluate
226 // m = (g(x) + g(y)) / 2 -- mean value
227 // s = (g(x) - g(y)) / (x - y) -- average slope
228 // where
229 // g(x) = sum(c[j]*SC(2*j*x), j = 1..n)
230 // SC = sinp ? sin : cos
231 // CS = sinp ? cos : sin
232 //
233 // This function returns only s; m is discarded.
234 //
235 // Write
236 // t = [m; s]
237 // t = sum(c[j] * f[j](x,y), j = 1..n)
238 // where
239 // f[j](x,y) = [ (SC(2*j*x)+SC(2*j*y))/2 ]
240 // [ (SC(2*j*x)-SC(2*j*y))/d ]
241 //
242 // = [ cos(j*d)*SC(j*p) ]
243 // [ +/-(2/d)*sin(j*d)*CS(j*p) ]
244 // (+/- = sinp ? + : -) and
245 // p = x+y, d = x-y
246 //
247 // f[j+1](x,y) = A * f[j](x,y) - f[j-1](x,y)
248 //
249 // A = [ 2*cos(p)*cos(d) -sin(p)*sin(d)*d]
250 // [ -4*sin(p)*sin(d)/d 2*cos(p)*cos(d) ]
251 //
252 // Let b[n+1] = b[n+2] = [0 0; 0 0]
253 // b[j] = A * b[j+1] - b[j+2] + c[j] * I for j = n..1
254 // t = (c[0] * I - b[2]) * f[0](x,y) + b[1] * f[1](x,y)
255 // c[0] is not accessed for s = t[2]
256 real p = x + y, d = x - y,
257 cp = cos(p), cd = cos(d),
258 sp = sin(p), sd = d != 0 ? sin(d)/d : 1,
259 m = 2 * cp * cd, s = sp * sd;
260 // 2x2 matrices stored in row-major order
261 const real a[4] = {m, -s * d * d, -4 * s, m};
262 real ba[4] = {0, 0, 0, 0};
263 real bb[4] = {0, 0, 0, 0};
264 real* b1 = ba;
265 real* b2 = bb;
266 if (n > 0) b1[0] = b1[3] = c[n];
267 for (int j = n - 1; j > 0; --j) { // j = n-1 .. 1
268 swap(b1, b2);
269 // b1 = A * b2 - b1 + c[j] * I
270 b1[0] = a[0] * b2[0] + a[1] * b2[2] - b1[0] + c[j];
271 b1[1] = a[0] * b2[1] + a[1] * b2[3] - b1[1];
272 b1[2] = a[2] * b2[0] + a[3] * b2[2] - b1[2];
273 b1[3] = a[2] * b2[1] + a[3] * b2[3] - b1[3] + c[j];
274 }
275 // Here are the full expressions for m and s
276 // m = (c[0] - b2[0]) * f01 - b2[1] * f02 + b1[0] * f11 + b1[1] * f12;
277 // s = - b2[2] * f01 + (c[0] - b2[3]) * f02 + b1[2] * f11 + b1[3] * f12;
278 if (sinp) {
279 // real f01 = 0, f02 = 0;
280 real f11 = cd * sp, f12 = 2 * sd * cp;
281 // m = b1[0] * f11 + b1[1] * f12;
282 s = b1[2] * f11 + b1[3] * f12;
283 } else {
284 // real f01 = 1, f02 = 0;
285 real f11 = cd * cp, f12 = - 2 * sd * sp;
286 // m = c[0] - b2[0] + b1[0] * f11 + b1[1] * f12;
287 s = - b2[2] + b1[2] * f11 + b1[3] * f12;
288 }
289 return s;
290 }
291
292 Math::real Rhumb::DConformalToRectifying(real chix, real chiy) const {
293 return 1 + SinCosSeries(true, chix, chiy,
294 _ell.ConformalToRectifyingCoeffs(), tm_maxord);
295 }
296
297 Math::real Rhumb::DRectifyingToConformal(real mux, real muy) const {
298 return 1 - SinCosSeries(true, mux, muy,
299 _ell.RectifyingToConformalCoeffs(), tm_maxord);
300 }
301
302 Math::real Rhumb::DIsometricToRectifying(real psix, real psiy) const {
303 if (_exact) {
304 real
305 latx = _ell.InverseIsometricLatitude(psix),
306 laty = _ell.InverseIsometricLatitude(psiy);
307 return DRectifying(latx, laty) / DIsometric(latx, laty);
308 } else {
309 psix *= Math::degree();
310 psiy *= Math::degree();
311 return DConformalToRectifying(gd(psix), gd(psiy)) * Dgd(psix, psiy);
312 }
313 }
314
315 Math::real Rhumb::DRectifyingToIsometric(real mux, real muy) const {
316 real
317 latx = _ell.InverseRectifyingLatitude(mux/Math::degree()),
318 laty = _ell.InverseRectifyingLatitude(muy/Math::degree());
319 return _exact ?
320 DIsometric(latx, laty) / DRectifying(latx, laty) :
321 Dgdinv(Math::taupf(Math::tand(latx), _ell._es),
322 Math::taupf(Math::tand(laty), _ell._es)) *
323 DRectifyingToConformal(mux, muy);
324 }
325
326 Math::real Rhumb::MeanSinXi(real psix, real psiy) const {
327 return Dlog(cosh(psix), cosh(psiy)) * Dcosh(psix, psiy)
328 + SinCosSeries(false, gd(psix), gd(psiy), _R, maxpow_) * Dgd(psix, psiy);
329 }
330
331 RhumbLine::RhumbLine(const Rhumb& rh, real lat1, real lon1, real azi12,
332 bool /* exact */)
333 : _rh(rh)
334 , _exact(true) // TODO: RhumbLine::_exact is unused; retire
335 , _lat1(Math::LatFix(lat1))
336 , _lon1(lon1)
337 , _azi12(Math::AngNormalize(azi12))
338 {
339 real alp12 = _azi12 * Math::degree();
340 _salp = _azi12 == -180 ? 0 : sin(alp12);
341 _calp = abs(_azi12) == 90 ? 0 : cos(alp12);
342 _mu1 = _rh._ell.RectifyingLatitude(lat1);
343 _psi1 = _rh._ell.IsometricLatitude(lat1);
344 _r1 = _rh._ell.CircleRadius(lat1);
345 }
346
347 void RhumbLine::GenPosition(real s12, unsigned outmask,
348 real& lat2, real& lon2, real& S12) const {
349 real
350 mu12 = s12 * _calp * 90 / _rh._ell.QuarterMeridian(),
351 mu2 = _mu1 + mu12;
352 real psi2, lat2x, lon2x;
353 if (abs(mu2) <= 90 && _exact) { // TODO: dummy use of _exact; retire
354 if (_calp != 0) {
355 lat2x = _rh._ell.InverseRectifyingLatitude(mu2);
356 real psi12 = _rh.DRectifyingToIsometric( mu2 * Math::degree(),
357 _mu1 * Math::degree()) * mu12;
358 lon2x = _salp * psi12 / _calp;
359 psi2 = _psi1 + psi12;
360 } else {
361 lat2x = _lat1;
362 lon2x = _salp * s12 / (_r1 * Math::degree());
363 psi2 = _psi1;
364 }
365 if (outmask & AREA)
366 S12 = _rh._c2 * lon2x *
367 _rh.MeanSinXi(_psi1 * Math::degree(), psi2 * Math::degree());
368 lon2x = outmask & LONG_UNROLL ? _lon1 + lon2x :
370 } else {
371 // Reduce to the interval [-180, 180)
372 mu2 = Math::AngNormalize(mu2);
373 // Deal with points on the anti-meridian
374 if (abs(mu2) > 90) mu2 = Math::AngNormalize(180 - mu2);
375 lat2x = _rh._ell.InverseRectifyingLatitude(mu2);
376 lon2x = Math::NaN();
377 if (outmask & AREA)
378 S12 = Math::NaN();
379 }
380 if (outmask & LATITUDE) lat2 = lat2x;
381 if (outmask & LONGITUDE) lon2 = lon2x;
382 }
383
384} // namespace GeographicLib
GeographicLib::Math::real real
Definition: GeodSolve.cpp:31
Header for GeographicLib::Rhumb and GeographicLib::RhumbLine classes.
Math::real IsometricLatitude(real phi) const
Definition: Ellipsoid.cpp:84
Math::real QuarterMeridian() const
Definition: Ellipsoid.cpp:37
Math::real InverseIsometricLatitude(real psi) const
Definition: Ellipsoid.cpp:88
Math::real InverseRectifyingLatitude(real mu) const
Definition: Ellipsoid.cpp:65
Elliptic integrals and functions.
Math::real Delta(real sn, real cn) const
static T AngNormalize(T x)
Definition: Math.hpp:420
static T degree()
Definition: Math.hpp:159
static T tand(T x)
Definition: Math.cpp:173
static T atan2d(T y, T x)
Definition: Math.cpp:180
static T pi()
Definition: Math.hpp:149
static T NaN()
Definition: Math.cpp:260
static T polyval(int N, const T p[], T x)
Definition: Math.hpp:402
static T AngDiff(T x, T y, T &e)
Definition: Math.hpp:452
Find a sequence of points on a single rhumb line.
Definition: Rhumb.hpp:464
void GenPosition(real s12, unsigned outmask, real &lat2, real &lon2, real &S12) const
Definition: Rhumb.cpp:347
Solve of the direct and inverse rhumb problems.
Definition: Rhumb.hpp:66
RhumbLine Line(real lat1, real lon1, real azi12) const
Definition: Rhumb.cpp:168
Rhumb(real a, real f, bool exact=true)
Definition: Rhumb.cpp:18
friend class RhumbLine
Definition: Rhumb.hpp:69
static const Rhumb & WGS84()
Definition: Rhumb.cpp:142
Namespace for GeographicLib.
Definition: Accumulator.cpp:12
void swap(GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &a, GeographicLib::NearestNeighbor< dist_t, pos_t, distfun_t > &b)